
PPattach Tutorial

System PPAttach tackles the problem of prepositional phrase attachment by incorporating semantic
knowledge derived from the lexico-semantic ontologies such as VERBNET and WORDNET. The
system assumes input in the form of set of tuples

T1: (verb, noun, preposition, noun)

For a given set of tuples PPAttach will return its decision on each tuple on whether it triggers verb or
noun attachment. PPAttach uses machine learning methods to implement its decision procedure.
Machine learning methods are commonly used for implementing classification procedures called
classifiers. In supervised learning, the classifier is first trained on a set of labeled data (training data)
that is representative of the domain of interest. Typically labeled data consists of pairs of input objects
and a desired output. An input object is often summarized by so called feature vector. The trained
classifier is then used to carry out classification decisions for unseen data (testing data). PPAttach uses
classic “Ratanaparkhi” dataset, composed of labeled/annotated tuples of the form (T1), for “training”
and “testing”. Weka – a machine learning tool of the University of Waikato
http://www.cs.waikato.ac.nz/ml/weka/ – is used within the framework to carry out the classification.

Site

http://www.unomaha.edu/nlpkr/software/ppattach/

is the project's website which contains a link to the paper on

[1] “Prepositional Phrase Attachment Problem Revisited: How VERBNET Can Help” by Daniel
Bailey, Yuliya Lierler, Benjamin Susman, In Proceedings of the 11th International Conference on
Computational Semantics (IWCS), 2015.

This paper is the best resource for details on the implemented techniques.

This document provides directions on setting up, running, and extending the PPattach system. The
PPattach system is composed of two main components. One component is responsible for building
feature vectors for given tuples of the form (T1), another component is responsible for processing these
feature vectors and performing the classification itself. The former component is written in python by
the authors of the project. The latter component relies on Weka.

��������	��
��

The project uses Python 2.7 with NLTK 2.0.X. If the destination machine does not currently have
NLTK or is running NLTK 3, NLTK 2 will need to be installed. Instructions for doing so can be found
at (under the NLTK heading, Question/Answers 16-17):

http://www.pitt.edu/~naraehan/python2/faq.html

Instructions are provided for Linux users (but modulo command line commands these instructions can
easily be adapted on Windows).

For PKI-Linux lab users:

% cp -R /nlpkr/ppattach/ __the_directory_of_your_choice__

For general public:

http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://www.pitt.edu/~naraehan/python2/faq.html
http://www.unomaha.edu/nlpkr/software/ppattach/
http://www.cs.waikato.ac.nz/ml/weka/
http://wordnet.princeton.edu/

Download and unzip the following file:

http://www.unomaha.edu/nlpkr/software/ppattach/ppattach.zip

�����������������
�������

% cd /home/ylierler/ppattach

% python code/ppattach.py -h

3. Go to: Run → Run As → Python Run → New

Change Name to ppattach ppattach.py

Change Project to ppattach

Change Main Module to ${workspace_loc:ppattach/code/ppattach.py}

4. Now go to the Arguments Tab →Working directory

Change Working directory to Other: ${workspace_loc:ppattach}
Click Apply button and then Close button

�
�����������������

Getting Started

Start the system by

Go to: Run → Run As → 1 Python Run → Select code/ppattach.py

Command line arguments can be added by going to the menu:

Run → Run Configurations -> Arguments Tab → Program arguments

In this area, for example, you can type “-h”, then click “Apply” and “Run”

An explanation of valid command line arguments should be listed in the console. This is your main
way to interface with PPattach.

	� �����		�!" �"��#��������
��������
�����������������������

$���
���%�&��������

All development should be done in code/additionalFeatures.py. A dummy feature has been given in this
file. You may call the feature(s) whatever you want, but ensure that the results dictionary uses the
features' name as a key. The python dictionary results is an instance variable of code/features.py and is
inherited by code/additionalFeatures.py

Ideas for feature development may include:

� Analyzing a specific preposition and creating relevant features to capture this analysis (what
was done with 'with' [1]):

- in

- for

- on

- from

- to

� Utilizing or improving on existing lexical ontologies in creating new features

- Wordnet,

- Nomlex,

- NomBank,

- Propbank ...

	PPattach Tutorial
	Project Setup:
	Command Line Instructions:
	Testing with Weka
	Running in Eclipse:
	Getting Started

	SAMPLE ASSIGNMENT for a natural language processing project:
	Feature Development

